Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  Users Online: 165 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
ORIGINAL ARTICLE
Year : 2014  |  Volume : 4  |  Issue : 3  |  Page : 31-36

Composite alginate hydrogel microparticulate delivery system of zidovudine hydrochloride based on counter ion induced aggregation


1 Department of Pharmatechnology, Vikas College of Pharmaceutical Sciences, Suryapet, Nalgonda, Andhra Pradesh, India
2 Department of Biosciences and Technology , VIT University, Vellore, Tamil Nadu, India
3 Formulation Research and Development, FDC Limited, Mumbai, India
4 Department of Quality and Assurance, Microlabs Ltd., Hosur, Tamil Nadu, India

Correspondence Address:
Harekrishna Roy
Department of Pharmatechnology, Vikas College of Pharmaceutical Sciences, Suryapet, Nalgonda, Andhra Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2229-516X.140728

Rights and Permissions

Aim: The present study deals with preparation of zidovudine loaded microparticle by counter ion induced aggregation method. During this study effect of polyacrylates and hypromellose polymers on release study were investigated. Materials and Methods: The ion induced aggregated alginate based microparticles were characterized for surface morphology, particle size analysis, drug entrapment study, in-vitro study, Fourier-transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC) study. Results and Discussion: The result showed Eudragit RL-100 (ERL) based formulations had smoother surface as well as their mean particle sizes were found greater compared with Eudragit RS-100 (ERS) microparticles. Furthermore, drug entrapments were found to be more in ERL formulae as compared with ERS. RL3 released 101.05% drug over a period of 8 th h and followed Higuchi profile and Fickian diffusion. Moreover, data obtained illustrated that, higher amount of quaternary ammonium group, alkali value, and glass transition temperature may be possible reason for improving permeability of ERL based formulations. It was also noticed, hyroxypropyl methylcellulose (HPMC) K4M premium grade polymer sustained drug release more than HPMC K15M. In addition, drug-excipient interaction study was carried out by FTIR and DSC study.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1914    
    Printed43    
    Emailed0    
    PDF Downloaded320    
    Comments [Add]    
    Cited by others 1    

Recommend this journal