Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  Users Online: 598 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
ORIGINAL ARTICLE
Year : 2013  |  Volume : 3  |  Issue : 1  |  Page : 55-63

Formulation and design of sustained release matrix tablets of metformin hydrochloride: Influence of hypromellose and polyacrylate polymers


1 Department of Pharmatechnology, Vikas College of Pharmaceutical Sciences, Suryapet, Nalgonda, Andhra Pradesh, India
2 Department of Medicinal Chemistry, Laboratory of Chemometrics, National Institute of Chemistry, Hajdrihova 19, Sl-1000, Ljubljana, Slovenia, Europe
3 Department of Pharmatechnology, Jeypore College of Pharmacy, Rondapalli, Koraput, Odisha, India

Correspondence Address:
Harekrishna Roy
Department of Pharmatechnology, Vikas, College of Pharmaceutical Sciences, Nalgonda, Andhrapradesh, Hyderabad
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2229-516X.112242

Rights and Permissions

Aim: The current paper was an attempt to design a sustained release dosage form using various grades of hydrophilic polymers, Hypromellose (hydroxyl-propyl methylcellulose [HPMC] K15M, HPMC K100M and HPMC K200M) and Polyacrylate polymers, Eudragit RL100 and Eudragit RS100 with or without incorporating ethyl cellulose on a matrix-controlled drug delivery system of Metformin hydrochloride. Materials and Methods: Laboratory scale batches of nine tablet formulations were prepared by wet granulation technique (Low shear). Micromeritic properties of the granules were evaluated prior to compression. Tablets were characterized as crushing strength, friability, weight variation, thickness, drug content or assay and evaluated for in-vitro release pattern for 12 h using Phosphate buffer of pH 6.8 at 37 ± 0.5°C. The in-vitro release mechanism was evaluated by kinetic modeling. Results and Discussion: The results obtained revealed that HPMC K200M at a concentration of 26% in formulation (F6) was able to sustain the drug release for 12 h and followed the Higuchi pattern quasi-Fickian diffusion. With that, combined effect of HPMC K15M as an extragranular section and Eudragit RS100 displayed a significant role in drug release. Dissolution data were compared with innovator for similarity factor (f2), and exhibited an acceptable value of ≥50 Three production validation scale batches were designed based on lab scale best batch and charged for stability testing, parameters were within the limit of acceptance. There was no chemical interaction found between the drug and excipients during Fourier Transform Infrared Spectroscopy (FTIR) and Differential scanning calorimetry study. Conclusion: Hence, combinely HPMC K200M and Eudragit RS100 at a suitable concentration can effectively be used to sustain drug release.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed15183    
    Printed163    
    Emailed3    
    PDF Downloaded1475    
    Comments [Add]    
    Cited by others 5    

Recommend this journal