Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  Users Online: 177 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  

 Table of Contents  
ORIGINAL ARTICLE
Year : 2012  |  Volume : 2  |  Issue : 2  |  Page : 107-110  

Evaluation of calabash chalk effect on femur bone morphometry and mineralization in young wistar rats: A pilot study


1 Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
2 Department of Anatomy, University of Calabar, Calabar, Nigeria
3 Department of Biochemistry, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria

Date of Web Publication22-Jan-2013

Correspondence Address:
Moses B Ekong
Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo
Nigeria
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2229-516X.106352

Rights and Permissions
   Abstract 

Background: Calabash chalk, a popularly consumed geophagic material in Nigeria has been reported to contain lead, arsenic, alpha lindane, endrin, and endosulfan 11 among other pollutants. Aim: The continuous exposure of young children to this chalk necessitated this study on the bone morphometry and mineralization in young Wistar rats. Materials and Methods: Fourteen young (weanling) Wistar rats of both sexes weighing 54-72 g were assigned into two groups of seven animals each. Group I served as control, while group II was the test group (TG). 40 mg/ml of C. chalk was administered as suspension to the test animals in group II. Animals in the control group were orally treated with 1ml of distilled water. Administration of the C. chalk in the animals lasted for 28 days, and the animals were sacrificed on day 29, using chloroform anaesthesia. The femur bones were dissected out, cleaned of flesh and sun-dried. The lengths and weights of the femur bones were measured using graphite furnace atomic mass spectrophotometer. Results: Results showed 1.6% decrease in body weight change in the TG, insignificant decreases in the weights and lengths of both the right and left femur bones, and significant decreased (P < 0.0126) organ-somatic index, and femur bones concentrations (mg/l) of zinc, phosphate, carbonate, calcium, sodium, and potassium (P < 0.05). Conclusion: In conclusion, this study showed that C. chalk may alter growth rate, and cause de-mineralization in the femur bone, hence, it may be detrimental to bone growth.

Keywords: Bone morphometry, bone mineralization wistar rats, calabash chalk, femur


How to cite this article:
Ekong MB, Ekanem TB, Sunday AO, Aquaisua AN, Akpanabiatu MI. Evaluation of calabash chalk effect on femur bone morphometry and mineralization in young wistar rats: A pilot study. Int J App Basic Med Res 2012;2:107-10

How to cite this URL:
Ekong MB, Ekanem TB, Sunday AO, Aquaisua AN, Akpanabiatu MI. Evaluation of calabash chalk effect on femur bone morphometry and mineralization in young wistar rats: A pilot study. Int J App Basic Med Res [serial online] 2012 [cited 2019 Oct 18];2:107-10. Available from: http://www.ijabmr.org/text.asp?2012/2/2/107/106352


   Introduction Top


The act of eating the earth including clay and chalk is neither new nor outdated. [1] Geophagia, the practice of eating earth is associated with religious beliefs, medicinal and dietary purposes. The implication of this act is the exposure to toxic substances and parasites that are present in the ingested earth. [2],[3],[4]

One of such geophagic materials is the Calabash chalk, consumed largely in West Africa as a remedy for morning sickness; hence it is highly patronized by pregnant women. [5],[6],[7] The chalk is found largely in Nigeria and other West African communities. It is also found in ethnic stores and markets in the United States of America and the United Kingdom. Different names have been ascribed to this chalk: Calabar stone in English, La Craie or Argile in French, Mabele by Lingala in Congo, Nzu by Igbo and Ndom by the Efik/Ibibio of Nigeria. [5],[6],[7]

The major component of C. chalk is aluminum silicate hydroxide from the kaolin clay group, with a possible formula Al 2 Si 2 O 2 (OH) 4 . [1],[8] This chalk is available in varieties of forms including powder, molded shapes and blocks. [8]

Analysis of the C. chalk revealed some poisonous substances such as lead and arsenic. [6],[8] Lead concentration in C. chalk has been reported to be approximately 40 mg/kg. [8] This concentration of lead in the C. chalk is far more than the approved dietary concentration. [9] Other toxic elements including aluminum, silicon, alpha lindane, endrin, and endosulfan 11 have also been reported. [8]

Research carried out with the chalk on rats revealed fragmentation of the parenchymal cells, and dilation of sinusoids of the liver due to treatment with the chalk. [10] Another report has it that it alters the normal concentration of hemoglobin, red blood cell counts and erythrocyte sedimentation rate (ESR), of female rats. [11]

Since there are reports that this chalk contains heavy metals and other toxic substances, the deposition of these substances in the bone tissue may result in bone disorders and poor growth. [12] Lead, a constituent of this chalk can be localized in areas of bone mineralization and growth. [13] Accumulation of lead in skeletal tissues begins during fetal development and continues throughout adulthood. [14],[15] It has been reported that lead adversely influences bone development through disruption of mineralization during growth. [16] As there are no clinical studies, it is important therefore to investigate the effect of C. chalk on the morphometry and mineralization of the bone in experimental animals with the aim of relating the findings to human situation, hence this study was conducted.


   Materials and Methods Top


Fourteen young (weanling) Wistar rats of both sexes weighing 54-72 g, obtained from the Animal House, Faculty of Basic Medical Sciences, University of Uyo, were housed in wooden cages with saw particles as bedding. The animals were handled in accordance with International regulation governing the use of laboratory animals. The rats were fed with normal commercial pellet (Vital Feed, Grand Cereal Ltd, Plateau State, Nigeria) and water was allowed ad libitum throughout the period of the experiment. The room temperature of the experimental animal house ranged between 26-29 o C, with 12:12 hour light and dark cycle. The animals were allowed to acclimatize for 7 days before the beginning of the experiment. The animals were equally assigned into two groups. Group I served as the control group (CG), while group II served as test group (TG).

Non-salted Calabash chalk was bought from a local market in Ikot Omin, Calabar, Nigeria. The chalk was grounded to powder. 40 g of the chalk powder was dissolved in 1 liter of water to give a suspension which was stirred prior to administration. Animals in CG were treated with 1ml of distilled water, while those in TG were treated with 1ml of C. chalk suspension containing 40 mg/ml of the non-salted C. chalk. All administration was by oral intubation.

Treatment was given in the morning hours of 8-9 am and lasted for 28 days. On day 29, the weight of the animals was noted, and the animals were sacrificed by humane killing using chloroform anesthesia. The femur bones were dissected out, cleaned of flesh and sun-dried. The lengths and weights of the femur bones and their mineral contents were measured.

The weight of the femur bones was measured using a digital weighing balance to the nearest 0.01g. The length was measured from the head to the condyles of the femur, by means of a measuring tape to the nearest 0.1mm. The mean of each double reading was recorded for the weights and the lengths. The sum of the weight of both the right and left femur were taken as the organ weights, and the organ-somatic index of the femur bones in both groups was computed (Organ somatic index = Organ weight/body weight).

The femur bones were digested using analytical grade nitric acid (3 ml per tissue). Acid digest were diluted appropriately with double distilled-deionized water before analysis of the minerals. Bone phosphate (P) concentration was determined using the acid-molybdate method, and the absorbance read at 400 nm. The analysis for zinc (Zn) was done using the ZincoVer method and the absorbance was read at 620 nm. Sodium (Na), potassium (K) and calcium (Ca) were carried out using graphite furnace atomic mass spectrophotometer and absorbance read at 589 nm, 766.5 nm and 422.7 nm respectively. Mean values were obtained from two consecutive analysis.

Statistical analysis

Data were statistically analyzed using standard student t-test and the results presented as mean ± standard deviation. P value of <0.05 was regarded as significant.


   Results Top


On day 6 of administration, the fecal boluses of the test group (TG) animals were softer in consistency than those of the control group (CG) animals. On day 8, the color of the fecal bolus of the TG was found to be brown to milky color, and this fecal color was maintained till the end of the experiment, unlike the CG that had brownish brown color of fecal bolus. The feeding and water intake of the rats in both groups were not affected.

The mean initial body weights (g) of the TG animals were significantly lower (P < 0.0006) compared with the CG, while the mean final body weights of the TG animals were also significantly lower (P < 0.0008) compared with the CG. The mean change in body weight of the animals in the TG and CG were 52.17 g (47%) and 66.29 g (48.6%), respectively [Table 1].
Table 1: Weight of animals of the control and test groups

Click here to view


The lengths of the femur bones in the TG were slightly shorter in both the right and the left sides compared to the CG. The differences were however not significant. There was also an insignificant decrease in the weight of both the right and left femur bones of the TG when compared to the CG [Table 2].

The organ-somatic index in the TG and CG was 0.0025 ± 0.008 and 0.0033 ± 0.004 respectively, with a statistically significant difference (P < 0.0126).
Table 2: Weight and length of femur bones of the control and test groups

Click here to view


The mean femur bone concentration (mg/l) of Zn, P, Ca, Na, and K were significantly lower (P < 0.05) in the TG compared to the CG [Table 3].
Table 3: Minerals deposition in the femur bones of the control and test groups

Click here to view



   Discussion Top


Calabash chalk has been reported to contain lead, arsenic and persistent organic pollutants among other substances. [6],[8] The mean concentration of lead as reported by Dean et al.[8] was approximately 40 mg/kg which far exceeded the European Union recommended safety level for dietary lead by 40 fold. [3] This and other heavy metals present in this chalk are likely to interfere with the normal process of bone formation.

In this study, we investigated the effect of the chalk on bone mineralization and other morphological changes in experimental Wistar rats. There was 1.6% decrease in body weight change of the test group (TG). This may result from disruption in nutrient absorption by the chalk, as kaolin, its major constituent, has been reported to coat the lining of the gastrointestinal tract. [17] As a result of this, the coating may have prevented the absorption of beneficial nutrients leading to poor nutrition, which ultimately resulted in a limited body weight gain reported in this study. Beside this, poor nutrition can also increase the risk to other adverse health effects. [18] It is reported that lead reduced body weight and bone mass. [19] As one of the poisonous substance found in the chalk, lead may have played a significant role in the body weight reduction observed in this investigation.

There were no significant change in the length and weight of each of the right and left femur bones of TG compared to CG, and no significant change between the right and left femur bones in all the parameter measures in both groups. This is consistent with the normal symmetry of the body. However, the organ-somatic index of the TG was significantly decreased. This may be due to the significant change in body weight observed in this study. Our study is at variance to a previous report. [19] Here lead treatment resulted in about 2% decrease in femur length.

Furthermore, the results of our investigation showed a significant decrease in the bone minerals content in TG, which may be due to the combined effects of lead and other toxic elements present in the C. chalk. [8] Also, the developing skeleton is much more sensitive to toxicity than that of the adult. [20] Lead adversely influences bone development through disruption of mineralization during growth. [16] Lead accumulates and substitutes calcium in bone tissues and the resultant effect is that of disruption of mineralization, alteration of compositional properties and bone formation mechanisms, as well as the gradual depletion of bone minerals. [21],[22],[23] Lead has also been implicated in reduction of bone strength, [24] oxidative stress, reduced Zn, Na, copper (Cu) and iron (Fe) in rat bone. [25] and impaired bone mineral density and content. [22] The reduction in bone mineralization could lead to an increase in bone fragility and osteoporosis. Our study is at variance to a report by Jamieson et al. [19] According to this report, femoral Ca and P concentration were not affected when treated with lead.

In conclusion, the effect of calabash chalk on femur bone morphometry and mineralization of young Wistar rats showed that C chalk may alter growth rate, and cause de-mineralization in the femur bone, and hence it may be detrimental to bone growth. As this is a case in rats, a clinical trial could be carried out on humans to determine its effects.

 
   References Top

1.Reilly C, Henry J. Why do human consume soil? Nutr Bull 2000;25:141-4.  Back to cited text no. 1
    
2.Hunter JM. Geophagy in Africa and in the United States: A culture-nutrition hypothesis. Geograph Rev 1973;63:170-95.  Back to cited text no. 2
    
3.Food Drug Administration, FDA: New York. Nzu, traditional remedy for morning sickness. Available from: http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm196045.htm#footer. [Last accessed on 2010 Jul 06].  Back to cited text no. 3
    
4.Yeitz JL, Gillin CM, Bildfell RJ, Debess EE. Prevalence of Baylisascaris procyonis in raccoons (Procyon lotor) in Portland, Oregon, USA. J Wildl Dis 2009;45:14-8.  Back to cited text no. 4
[PUBMED]    
5.The National Agency for Food, Drug Administration and Control, NAFDAC: Abuja Calabash Chalk. Available from: http://www.nafdacnigeria.org/alerts.html. [Last accessed on 2010 Jul 06].  Back to cited text no. 5
    
6.Health Canada. Calabash chalk may post risk for pregnant and breastfeeding women. Available from: www.hc-gc.ca. [Last accessed on 2010 Dec 02]  Back to cited text no. 6
    
7.Pharmboy A (2010) Nzu: African morning sickness remedy in Texas contains lead and arsenic. Available from: http://scienceblogs.com/terrasig/2010/01/african_morning_sickness_remed.php#comment-2186178. [Last accessed on 2010 Jul 06].  Back to cited text no. 7
    
8.Dean JR, Deary ME, Gbefa BK, Scott WC. Characterization and analysis of persistent organic pollutant and major, minor and trace element in calabash chalk. Chemosphere 2004;57:21-5.  Back to cited text no. 8
[PUBMED]    
9.European Union Commission regulation (2001) Setting maximum level for certain contaminants in food stuff (EC) No. 466/2001.  Back to cited text no. 9
    
10.Ekong MB, Akpantah AO, Ibok OS, Eluwa MA, Ekanem TB. Differentia effect of calabash chalk on the histology of the liver of adult Wistar rats. Int J Health 2009;8:2.  Back to cited text no. 10
    
11.Akpantah AO, Ibok OS, Ekong MB, Eluwa MA, Ekanem TB. The effect of calabash chalk or some hematological parameters in female adult Wistar rats. Turk J Hematol 2010;2:177-181.  Back to cited text no. 11
    
12.Guyton AC, Hall JE. Text book of medical physiology. 11 th ed. Philadelphia: Saunders Elsevier; 2006.  Back to cited text no. 12
    
13.Park EA, Jackson D, Godwin TC, Kajdi L. X-ray shadows in growing bones produced by lead: Their characteristics, causes, anatomical counterpart in the bone and differentiation. J Pediatr 1978;3:265-98.  Back to cited text no. 13
    
14.Barry PSI. A comparison of concentrations of lead in human tissues. Br J Ind Med 1975;32:119-39.  Back to cited text no. 14
    
15.Brotter P, Gaulite D, Lausch J, Rosich V. On the distribution of trace elements in human skeletons. J Radioanal Chem 1977;37:393-403.  Back to cited text no. 15
    
16.Hamilton JD, O'Flaherty EJ. Effect of lead exposure on skeletal development in rats. Fundam Appl Toxicol 1994;22:594-604.  Back to cited text no. 16
[PUBMED]    
17.Abraham PW, Follansbee MA, Hunt A, Smith B, Wragg J. Iron nutrition and possible lead toxicity. An Appraisal of geophagy undertaken by pregnant women of UK, Asian communities. Appl Geochem 2006;21:98-108.  Back to cited text no. 17
    
18.Mahaffey KR. Nutritional factors in lead poisoning. Nutr Rev 1981;39:353-60.  Back to cited text no. 18
    
19.Jamieson JA, Taylor CG, Weiler HA. Marginal zinc deficiency exacerbates bone lead accumulation and high dietary zinc attenuates lead accumulation at the expense of bone density in growing rats. Toxicol Sci 2006;92:286-94.  Back to cited text no. 19
[PUBMED]    
20.Pounds JG, Long GJ, Rosen JF. Cellular and molecular toxicity of lead in bone. Environ Health Perspect 1991;19:17-32.  Back to cited text no. 20
    
21.Hamilton JD, O'Flaherty EJ. Influence of lead in mineralization during bone growth. Fundam Appl Toxicol 1995;26:265-71.  Back to cited text no. 21
[PUBMED]    
22.Medeiros DM, Stoecker B, Plattner A, Jennings D, Haub M. Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J Nutr 2004;134:3061-7.  Back to cited text no. 22
[PUBMED]    
23.Gangoso L, Álvarez-Llovet P, Rodríguez-Mavaro AA, Rafael M, Hiraldo F, Donázar JA. Long term effect of Lead poisoning on bone mineralization in vultures exposed to ammunition sources. Environ Pollution 2009;157:569-74.  Back to cited text no. 23
    
24.Ronis MJ, Aronson J, Gao GG, Hogue W, Skinner RA, Badger TM, et al. Skeletal effect of developmental lead exposure in rats. Toxicol Sci 2001;62:321-9.  Back to cited text no. 24
[PUBMED]    
25.Payal B, Kaur HP, Rai DV. New insight into the effects of lead modulation on antioxidant defense mechanism and trace element concentration in rat bone. Interdis Toxicol 2009;2:18-23.  Back to cited text no. 25
[PUBMED]    



 
 
    Tables

  [Table 1], [Table 2], [Table 3]


This article has been cited by
1 Histological studies on the effect of calabash chalk on the cerebellum of gestating Wistar rats
Godson Kelechi Peace
MOJ Anatomy & Physiology. 2018; 5(1)
[Pubmed] | [DOI]
2 Major and minor element contents of calabash clay (nzu) from Abia State, Nigeria: evaluation of potential intake benefits and risks
Innocent Chidi Nnorom
Toxicological & Environmental Chemistry. 2016; 98(2): 149
[Pubmed] | [DOI]
3 Calabash Chalkęs Geophagy Affects Gestating Ratsę Behavior and the Histomorphology of the Cerebral Cortex
Moses B. Ekong,Aniekan I. Peter,Theresa B. Ekanem,Mokutima A. Eluwa,Christopher C. Mbadugha,Eme E. Osim
International Journal of Brain Science. 2014; 2014: 1
[Pubmed] | [DOI]
4 Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure
Lalit P. Chandravanshi,Rajesh S. Yadav,Rajendra K. Shukla,Anshuman Singh,Sarwat Sultana,Aditya B. Pant,Devendra Parmar,Vinay K. Khanna
International Journal of Developmental Neuroscience. 2014;
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
    References
    Article Tables

 Article Access Statistics
    Viewed5461    
    Printed86    
    Emailed0    
    PDF Downloaded272    
    Comments [Add]    
    Cited by others 4    

Recommend this journal